Update on the Prevention of Surgical Site Infections

Scientific Seminar on Infection Control May 9, 2012

Tom R. Talbot, MD MPH Associate Professor of Medicine and Preventive Medicine Vanderbilt University School of Medicine Chief Hospital Epidemiologist Vanderbilt University Medical Center

DISCLAIMERS

- I am not a surgeon
- I do not believe that SSIs and lapses in practices are necessarily intentional/of malicious intent

Background: SSI

- 24 million surgeries/year in US
- 2.7% develop SSI
- **#2** healthcare-associated infection
- Expanding issues:
 - Novel techniques
 - Move to outpatient arena
 - ↑ Immunosuppressed pts

Risk Factors for SSI

• Patient Factors:

- Diabetes
- Periop hyperglycemia
- Tobacco use (current)
- Malnutrition
- Prolonged pre-op stay
- ? Age
- Irradiation
- ? Corticosteroid use
- Obesity

- Operative Factors:
 - Surgical technique
 - Poor skin prep
 - Incorrect Abx prophylaxis
 - Use of razor
 - Shaving night before
 - Break aseptic technique
 - No pre-op antiseptic shower
 - Prolonged procedure

Staphylococcus aureus Carriage: Screening and Decolonization

Staph. aureus Colonization as a Risk for Infection

- RCT of mupirocin in general, gynecologic, neurosurgical, and CT procedures
 - OR of *S. aureus* SSI in colonized vs. non-colonized placebo recipients = 4.5 (2.5-8.2)
- Cardiac surgery patients:
 - Carriers 9.6 times more likely to have SSI than noncolonized patients
- Harvest site infections:
 - RR of *S. aureus* SSI in colonized vs. non-colonized patients = 7.1 (2.2-23.0)

Carriage Eradication

- Elimination led to:
 - ↓ carriage
 - \downarrow SSI in cardiothoracic pts.
 - \downarrow SSI in orthopedic pts.
 - \downarrow *S. aureus* infection in dialysis pts.
 - ↓ *S. aureus* bacteremia
 - \downarrow catheter exit-site infections in dialysis pts.

RCTs of Mupirocin Decolonization

Nosocomial S. aureus infections among surgical pts with SA carriage

Study or subcategory	Mupirocin n/N	Control n/N	RR (random) 95% CI	Weight %	RR (random) 95% CI
Garcia	1/31	3/34		4.76	0.37 [0.04, 3.33]
Kalmeijer	2/95	5/86	← ■ ────	8.93	0.36 [0.07, 1.82]
Perl	17/430	34/439		72.38	0.51 [0.29, 0.90]
Konvalinka	5/130	4/127		- 13.93	1.22 [0.34, 4.44]
Total (95% CI)	686	686		100.00	0.55 [0.34, 0.89]
Total events: 25 (mupirocin), 4	6 (control)				
Test for heterogeneity: $x^2 = 1.92$	2, df=3 (P=0.59), I ² =0%				
Test for overall effect: $Z=2.43$	(P=0.02)				
			0.1 0.2 0.5 1 2	5 10	

Favours treatment Favours control

S. aureus SSIs among surgical pts with SA carriage

Study or subcategory	Mupirocin n/N	Control n/N	RR (random) 95% CI	Weight %	RR (random) 95% CI
Garcia	1/31	3/34	• • • • • • • • • • • • • • • • • • •	5.26	0.37 [0.04, 3.33]
Kalmeijer	2/95	5/86	→ → → → → → → → → →	9.87	0.36 [0.07, 1.82]
Perl	16/432	26/439	· · · · · · · · · · · · · · · · · · ·	69.46	0.63 [0.34, 1.15]
Konvalinka	5/130	4/127	_	15.41	1.22 [0.34, 4.44]
Total (95% CI) Total events: 24 (treatment), 38 (co Test for heterogeneity: x^2 =1.69, df	688 ntrol) =3 (P=0.64), I ² =0%	686		100.00	0.64 [0.38, 1.06]
Test for overall effect: Z=1.73 (P=	0.08)				
			0.1 0.2 0.5 1 2 5 Favours treatment Favours con	10 trol	

van Rijen MM et al J Antimicrob Chemother 2008;61:254+

TATTELEDILL W CHITLESTTY

MEDICAL CENTER

Preventing Surgical-Site Infections in Nasal Carriers of Staphylococcus aureus

Lonneke G.M. Bode, M.D., Jan A.J.W. Kluytmans, M.D., Ph.D., Heiman F.L. Wertheim, M.D., Ph.D., Diana Bogaers, I.C.P., Christina M.J.E. Vandenbroucke-Grauls, M.D., Ph.D., Robert Roosendaal, Ph.D., Annet Troelstra, M.D., Ph.D., Adrienne T.A. Box, B.A.Sc., Andreas Voss, M.D., Ph.D., Ingeborg van der Tweel, Ph.D., Alex van Belkum, Ph.D., Henri A. Verbrugh, M.D., Ph.D., and Margreet C. Vos, M.D., Ph.D.

- RCT in Netherlands
- Adult patients admitted to departments of surgery and internal medicine screened for SA carriage (PCR)
- Carriers randomized to mupirocin-CHG decolonization vs. placebo soap & ointment
- Mupirocin: BID for 5 days
- CHG: Daily for 5 days
- Reapplication at 3 weeks and 6 weeks if still hospitalized

- N = 6771 screened \rightarrow 1251 SA+ (18.5%) \rightarrow 918 randomized
- Placebo group with signif. more immunocompromised pts.
- No data on compliance w/ other SSI prevention measures

Table 2. Polative Pick of Hearital Acquired Stanbulacescus aurous Infection

and Characteristics of Infections (Intention-to-Treat Analysis).				
Variable	Mupirocin– Chlorhexidine (N = 504)	Placebo (N=413)	Relative Risk (95% CI)*	
	no. (%)		
S. aureus infection	17 (3.4)	32 (7.7)	0.42 (0.23–0.75)	
Source of infection†				
Endogenous	12 (2.4)	25 (6.1)	0.39 (0.20–0.77)	
Exogenous	4 (0.8)	6 (1.5)	0.55 (0.16–1.92)	
Unknown	1 (0.2)	1 (0.2)		
Localization of infection				
Deep surgical site‡	4 (0.9)	16 (4.4)	0.21 (0.07–0.62)	
Superficial surgical site‡	7 (1.6)	13 (3.5)	0.45 (0.18–1.11)	
Lower respiratory tract	2 (0.4)	2 (0.5)	0.82 (0.12–5.78)	
Urinary tract	1 (0.2)	0		
Bacteremia	1 (0.2)	1 (0.2)		
Soft tissue	2 (0.4)	0		

* Relative risks are for S. aureus infection in the mupirocin-chlorhexidine group.

† The source of the S. aureus infections was determined by comparing nasal strains with strains isolated from the infection site by pulsed-field gel electrophoresis.

‡ Data are for surgical patients only: 441 in the mupirocin–chlorhexidine group and 367 in the placebo group.

Screening + Decolonization

- Benefits:
 - It's cheap (maybe)
 - It's easy (maybe)
 - It works (in some pts)
- Risks:
 - Increased infections due to other pathogens?
 - Resistance development

- Questions:
 - Does effect last?
 - Use in all populations?
 - Costs of screening?
 - Which screening test?
 - Impact of mupirocin resistance

Skin Antisepsis

Skin Preparation: Which Agent?

- Quasi-experimental study of preps
- 3 periods:

 Povidone-iodine + alcohol
 CHG-alcohol
 Iodine + alcohol

- Adult general surgical pts
- N = 3209 operations
- SSI Rates:

6.4% 7.1% 3.9% (p=0.002)

Swenson BR et al Infect Control Hosp Epidemiol 2009;30:964+

Chlorhexidine–Alcohol versus Povidone– Iodine for Surgical-Site Antisepsis

Rabih O. Darouiche, M.D., Matthew J. Wall, Jr., M.D., Kamal M.F. Itani, M.D.,
Mary F. Otterson, M.D., Alexandra L. Webb, M.D., Matthew M. Carrick, M.D.,
Harold J. Miller, M.D., Samir S. Awad, M.D., Cynthia T. Crosby, B.S.,
Michael C. Mosier, Ph.D., Atef AlSharif, M.D., and David H. Berger, M.D.

- RCT adults undergoing clean-contaminated GI/GU/GYN/Thoracic surgery at 6 sites
- Chlorhexidine-alcohol vs. povidone-iodine
- Outcome: Any SSI within 30 days
- N = 849
- Overall SSI Rate:
 - P-I group: 16.1%
 - CHG-alcohol group: 9.5%

RR: 0.59 (95% CI: 0.41-0.85)

Darouiche RO et al NEJM 2010;362:18+

MEDICAL CENTER

VANDEKDILI

UNIVERSITY

 Table 2. Proportion of Patients with Surgical-Site Infection, According to Type of Infection (Intention-to-Treat Population).

Type of Infection	Chlorhexidine– Alcohol (N = 409)	Povidone–Iodine (N = 440)	Relative Risk (95% CI)*	P Value†
	no. (%)		
Any surgical-site infection	39 <mark>(</mark> 9.5)	71 (16.1)	0.59 (0.41–0.85)	0.004
Superficial incisional infection	17 (4.2)	38 (8.6)	0.48 (0.28–0.84)	0.008
Deep incisional infection	4 (1.0)	13 (3.0)	0.33 (0.11–1.01)	0.05
Organ-space infection	18 (4.4)	20 (4.5)	0.97 (0.52–1.80)	>0.99
Sepsis from surgical-site infection	11 (2.7)	19 (4.3)	0.62 (0.30–1.29)	0.26

* Relative risks are for chlorhexidine-alcohol as compared with povidone-iodine. The 95% confidence intervals were calculated with the use of asymptotic standard-error estimates.

† P values are based on Fisher's exact test.

Impact noted with superficial and deep SSI, NOT organ space SSI

"The weight of evidence suggests that chlorhexidine-alcohol should replace povidone-iodine as the standard for preoperative surgical scrubs."

Common criticism: No comparison with povidone + alcohol - was benefit due to combination with alcohol??

Surgical Skin Antisepsis

- CHG-based prep appears to be best
- Avoid use with:
 - < 2 month old</p>
 - Mucous membranes
 - Contact with meninges**

Warnings

For external use only. Flammable: keep away from fire or flame.

Do not use with electrocautery procedures

Do not use

- in children less than 2 months of age because of the potential for excessive skin irritation and increased drug absorption
- on patients with known allergies to chlorhexidine gluconate or isopropyl alcohol
- for lumbar puncture or in contact with the meninges
- on open skin wounds or as a general skin cleanser

When using this product keep out of eyes, ears, and mouth. May cause serious or permanent injury if permitted to enter and remain. If contact occurs, rinse with cold water right away and contact a doctor.

Antibiotic Prophylaxis

Who Needs Surgical Prophylaxis?

- Recommended for <u>all</u> clean contaminated procedures
 - e.g. colon, small bowel, GYN
- Recommended for clean procedures:
 - a) involving insertion of intravascular prosthetic material or a prosthetic joint *or*
 - b) in which an SSI would pose catastrophic risk (e.g. cardiac surgery)
- Contaminated/dirty procedures:
 - Assume already on abx
 - Should also ensure Staph coverage

Key Principles of Surgical Prophylaxis

- Tissue concentration of antimicrobial needs to be above the mean inhibitory concentration (MIC) of that drug for the organisms of concern AT THE TIME OF THE INCISION
- Get the D's right:
 - Right Drug
 - Right Dose
 - Right Delivery (i.e. timing)
 - Right Duration

VANDERBILT VUNIVERSITY MEDICAL CENTER

RIGHT DELIVERY: Relation of Abx Timing to Risk for Developing SSI

Classen DC et al NEJM 1992;326:281+

RIGHT DELIVERY: Relation of Abx Timing to Risk for Developing SSI

Steinberg JP et al Arch Surg 2009;250:10+

VANDERBILT **W**UNIVERSITY MEDICAL CENTER

RIGHT DELIVERY: Too Close to Incision Time = Bad?

- Cohort of >3,800 surgical pts
- All received cefuroxime prophylaxis
 - +metronidazole in colorectal pts

RIGHT DELIVERY: Too Close to Incision Time = Bad?

- Cohort of >2,000 cardiac surgery pts
- All received vancomycin prophylaxis

Tiı adı	me of vancomycin ministration	No. of patients	No. (%) of infections ^a	Relative risk (95% CI)	Odds ratio (95% CI) ^b
	0–15 min	15	4 (26.7)	7.8 (2.5–24.7)	11.6 (2.6–52.4) ^c
	16–60 min	176	6 (3.4)	1.0	1.0
	61–120 min	888	68 (7.7)	2.2 (0.99–5.09)	2.3 (0.98–5.61) ^d
	121–180 min	700	48 (6.9)	2.0 (0.87–4.62)	2.6 (1.1–6.2) ^e
	>180 min	269	21 (7.8)	2.3 (0.94–5.56)	2.1 (0.82–5.62) ^f

 $^{a}P = 0.0119$ by the χ^{2} analysis.

^bDetermined using multivariate logistic regression, controlling for significant covariates.

 $^{c}P = 0.0014.$

 $^{\rm d}P = 0.056.$

 $^{\circ}P = 0.037.$

 ${}^{\rm f}P = 0.12.$

RIGHT DRUG: Basic Principles

- Spectrum of activity
 - Cover the pathogens of concern at anatomic location
- Bioactivity/penetration into target tissues
- Limited toxicity
- Pt allergies
- Cost (if all other factors equal)

RIGHT DRUG: Which Antibiotic?

- Cephalosporins most widely tested
- Vancomycin (if MRSA a concern)
- Metronidazole/clindamycin for anaerobes
- Newer agents?
 - Indication not commonly pursued
 - Desire to save newer agents
 - Older agents seem to work
- New prophylaxis guidelines from IDSA/SHEA/SIS/ASHP due ASAP

What About MRSA Coverage?

- Use of vancomycin recommended if outbreak situation or if local incidence levels are "high"
- Many communities do not know local incidence of MRSA (infection or colonization)

RIGHT DRUG: Vancomycin for Routine Abx Prophylaxis

- RCT of 855 cardiac surgery patients
- Vancomycin vs. cefazolin for prophylaxis

Finkelstein R et al J Thorac Cardiovasc Surg 2002;123:326+

RIGHT DRUG: Vancomycin for Routine Abx Prophylaxis

- Retrospective analysis of all patients with SSI
- Multivariate analysis:
 - Receipt of vancomycin prophylaxis not associated with reduced risk for MRSA SSI
 - OR 1.9 (0.7-4.9)

Guidelines for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK

Curtis G. Gemmell¹, David I. Edwards², Adam P. Fraise³, F. Kate Gould⁴, Geoff L. Ridgway⁵ and Rod E. Warren⁶* on behalf of the Joint Working Party of the British Society for Antimicrobial Chemotherapy, Hospital Infection Society and Infection Control

Nurses Association

We recommend that patients who require surgery and have a history of MRSA colonization or infection without documented eradication receive glycopeptide prophylaxis alone or in combination with other antibiotics active against other potential pathogens. The use of glycopeptides may also be considered if there is an appreciable risk that patients' MRSA carriage may have recurred or they come from facilities with a high prevalence of MRSA. [Category II]

Gemmell CG et al J Antimicro Chemother 2006;57:589+

Meta-analysis Studies

Study	Population	Sample Size	Comparisons	Results
Bolon et al	Cardiothoracic pts	7 RCTs	β-lactams vs. glycopeptides	SSI 30 days post- op RR 1.14 (95% CI 0.91-1.42)
Chambers et al	Clean & clean- contaminated procedures	14 RCTs	β-lactams vs. glycopeptides	Similar effectiveness for SSI prevention

Vancomycin for Surgical Prophylaxis?

Tonya Crawford,¹ Keith A. Rodvold,¹ and Joseph S. Solomkin²

¹Department of Pharmacy Practice, University of Illinois at Chicago; and ²Department of Surgery, University of Cincinnati College of Medicine, Ohio

Several systematic analyses concluded that no clear benefit in clinical effectiveness or cost-effectiveness has been demonstrated for the routine prophylaxis use of vancomycin compared with cephalosporins. However, most of these studies were conducted before the increasing prevalence of MRSA and do not reflect current clinical situations.

Questions re: Vancomycin for Surgical Prophylaxis

- What is the level of MRSA prevalence where vancomycin has benefit?
- Use of MRSA bundle
 - Screen for carriage
 - Decolonization with mupirocin
 - Nares and at chest tube sites
 - Add vancomycin for MRSA + pts

RIGHT DRUG: What Type of Antibiotic?

- Intravenous (IV)
- Oral
- Local compounds
 - Impregnated sutures (triclosan)
 - Impregnated cement/implants
 - Wound irrigant

A Statewide Assessment of Surgical Site Infection Following Colectomy

The Role of Oral Antibiotics

Michael J. Englesbe, MD,* Linda Brooks, RN,* James Kubus, MS,* Martin Luchtefeld, MD,† James Lynch, MD,‡ Anthony Senagore, MD,† John C. Eggenberger, MD,§ Vic Velanovich, MD,¶ and Darrell A. Campbell, Jr., MD*

Oral Antibiotics with a Bowel Preparation Prior to Elective Colon Surgery

* P < 0.05

FIGURE 3. Surgical site infection rates among propensity matched cohorts of patients who either did or did not receive oral nonabsorbable antibiotics at the time of mechanical bowel preparation prior to elective colon surgery. Patients that received oral antibiotics were observed to have significantly lower rates of organ space infections, superficial surgical site infection, and overall surgical site infection rates.

Oral Antibiotics and Complications Following Colon Surgery

* P < 0.05

FIGURE 4. Surgical site infection rates among propensity matched cohorts of patients who either did or did not receive oral nonabsorbable antibiotics at the time of mechanical bowel preparation prior to elective colon surgery. Patients that received oral antibiotics were observed to have significantly lower rates of prolonged ileus and overall surgical site infection. Importantly, patient to receive oral antibiotics did not have significantly higher rates of *C. difficile* colitis.

RIGHT DOSE: Gastroplasty Patients and Cefazolin Levels

What About Another Dose?

RIGHT DURATION: How Long Should Abx be Continued?

- Desire to "protect tubes and drains"
- May increase risk of infection with antibiotic resistant organism
 - Study in cardiac surgery patients
 - No difference in infection rate in those w/ abx ≥ 48 hrs vs. < 48 hrs
 - Significantly ↑ risk for infection w/ resistant organisms (by 60%) w/ prolonged abx

Harbarth S et al Circulation 2000;101:2916+

RIGHT DURATION: Single vs. Multiple Doses

over single perioperative dose

McDonald M et al Aust N Z J Surg 1998;68:388+

Favors multiple doses

Favors single dose

Surgical Prophylaxis: How Well Do (Did?) We Do?

• Sample of >34,000 Medicare inpatients

Abx within 60 mins pre-incision	55.7%
Received recommended Abx	92.6%
Abx stopped at 24 hrs after procedure	40.7%

How Well Do We Do? Timing of First Dose of Abx

How Well Do We Do? Duration of Surgical Prophylaxis

Quality Measures for Surgical Care:

- SCIP 1: Abx within 1hr (2hr if vancomycin used)
- SCIP 2: Selection of abx
- SCIP 3: Timely discontinuation of Abx (24hrs, except for cardiac surgery = 48hrs)

Surgery patients who were given an antibiotic at the right time (within one hour before surgery) to help prevent infection

MEDICAL CENTER

SCIP Compliance and Postoperative Infections

- Retrospective cohort study
- Premier Inc.'s Perspective Database
 - 7/1/06 3/31/08
- N = 398 US hospitals
- Examined SCIP process measure adherence
- Outcome = ICD-9 coded diagnosis of postoperative infection (998.59)
- Examined relationship between individual measures and composite measures on infection

Stulberg et al JAMA 2010;303:2479+

Figure 1. Surgical Care Improvement Project (SCIP) Infection-Prevention Process Measures

	Nonadherent	Discharges	Adherent Discharges			
	Postoperative Infections	Discharges	Postoperative Infections	Discharges	Adjusted Odds Ratio (95% Cl)	
Individual SCIP measures INF-1: prophylactic antibiotic received within 1 h prior to surgical incision	251	18147	1394	190925	0.89 (0.75-1.06)	⊢
INF-2: prophylactic antibiotic selection for surgical patients	266	12670	1486	198 002	0.83 (0.69-1.00)	├ ──●──┤
INF-3: prophylactic antibiotics discontinued within 24 h after surgery end time	310	26499	1024	173228	0.94 (0.78-1.13)	├──●
INF-4: cardiac surgery patients with controlled 6 AM postoperative blood glucose	65	4168	362	31512	0.93 (0.68-1.27)	├───
INF-6: surgery patients with appropriate hair removal	194	21 308	3539	360111	1.00 (0.85-1.19)	├ ── ∲ ───┤
INF-7: colorectal surgery patients with immediate postoperative normothermia	181	4564	676	18101	1.00 (0.81-1.23)	├ ── ∲ ───┤
Composite measures						
S-INF-Core: all 3 original Surgical Infectio Prevention (SIP) project perioperative infection-prevention measures	n 511	44417	816	154963	0.86 (0.74-1.01)	
S-INF: all patients with at least 2 recorded SCIP infection-prevention measures in a single visit	843	59356	1070	158304	0.85 (0.76-0.95)	
S-INF-Core = INF-1, I S-INF = 2 or more of	NF-2, INF Any INF r	-3 neasure				0.50 1.00 2.00 Adjusted Odds Ratio (95% Cl)

Each estimate accounts for the surgical procedure performed, patient characteristics, and hospital characteristics. Cl indicates confidence interval.

Stulberg et al JAMA 2010;303:2479+

Reasons for Failure of Surgical Antimicrobial Prophylaxis

- Patient risk factors
- Procedural risk factors
 - Hair removal with razor
 - Inappropriate skin antisepsis
 - Hypothermia during procedure
- Incorrect dosing/drug/delivery
- Antibiotic resistant pathogens
 - When to change standard agents?

Preventing Hypoxia

Hypoxia & SSI: Pathophysiology

- WBC bactericidal activity secondary to oxidative killing
 - Use of superoxide radicals
 - Dependent upon partial pressure of O₂ in tissue
- Disruption of local vascular supply $\rightarrow \downarrow O_2$
- Provision of higher FiO2 \rightarrow reduced SSI?

Randomized Trials of High and Low Inspired FiO₂ and SSI

Study	Intervention	Sample Size	Patient Population	SSI Rates*	Comments
Grief et al (2000)	FiO ₂ 30% vs. FiO ₂ 80%	250 per arm	Elective colorectal	30% arm: 11.2% 80% arm: 5.2%	Trial stopped early
Pryor et al (2004)	FiO ₂ 35% vs. FiO ₂ 80%	80 per arm	Elective major abdominal	30% arm: 11.3% 80% arm: 25%	Trial stopped early
Belda et al (2005)	FiO ₂ 30% vs. FiO ₂ 80%	143 in 30%; 148 in 80%	Elective colorectal	30% arm: 24.4% 80% arm: 14.9%	
Mayzler et al (2005)	FiO ₂ 30% vs. FiO ₂ 80% (both w/N ₂ O)	19 per arm	Elective colorectal	30% arm: 17.6% 80% arm: 12.5%	Non- significant
Myles et al (2007)	FiO ₂ 30% + N ₂ O vs. FiO ₂ 80% + nitrogen	977 in arm 1; 1015 in arm 2	Elective or emergent noncardiothoracic resection	30% arm: 10.0% 80% arm: 7.7%	Differing comparators (N ₂ O vs. N)

*Variable SSI definitions

Grief R et al NEJM 2000;342:161+ Pryor KO et al JAMA 2004;291:79+ Belda FJ et al JAMA 2005;294:2035+ Mayzler O et al Minerva Anestesiol 2005;71:21+ Myles PS et al Anesthesiology 2007;107:221+

Randomized Trials of High and Low Inspired FiO₂ and SSI

Study	Intervention	Sample Size	Patient Population	SSI Rates*	Comments
Grief et al (2000)	FiO ₂ 30% vs. FiO ₂ 80%	250 per arm	Elective colorectal	30% arm: 11.2% 80% arm: 5.2%	Trial stopped early
Pryor et al (2004)	FiO ₂ 35% vs. FiO ₂ 80%	80 per arm	Elective major abdominal	30% arm: 11.3% 80% arm: 25%	Trial stopped early
Belda et al (2005)	FiO ₂ 30% vs. FiO ₂ 80%	143 in 30%; 148 in 80%	Elective colorectal	30% arm: 24.4% 80% arm: 14.9%	
Mayzler et al (2005)	FiO ₂ 30% vs. FiO ₂ 80% (both w/N ₂ O)	19 per arm	Elective colorectal	30% arm: 17.6% 80% arm: 12.5%	Non- significant
Myles et al (2007)	FiO ₂ 30% + N ₂ O vs. FiO ₂ 80% + nitrogen	977 in arm 1; 1015 in arm 2	Elective or emergent noncardiothoracic resection	30% arm: 10.0% 80% arm: 7.7%	Differing comparators (N ₂ O vs. N)

*Variable SSI definitions

Grief R et al NEJM 2000;342:161+ Pryor KO et al JAMA 2004;291:79+ Belda FJ et al JAMA 2005;294:2035+ Mayzler O et al Minerva Anestesiol 2005;71:21+ Myles PS et al Anesthesiology 2007;107:221+

Randomized Trials of High and Low Inspired FiO₂ and SSI

Study	Intervention	Sample Size	Patient Population	SSI Rates*	Comments
Grief et al (2000)	FiO ₂ 30% vs. FiO ₂ 80%	250 per arm	Elective colorectal	30% arm: 11.2% 80% arm: 5.2%	Trial stopped early
Pryor et al (2004)	FiO ₂ 35% vs. FiO ₂ 80%	80 per arm	Elective major abdominal	30% arm: 11.3% 80% arm: 25%	Trial stopped early
Belda et al (2005)	FiO ₂ 30% vs. FiO ₂ 80%	143 in 30%; 148 in 80%	Elective colorectal	30% arm: 24.4% 80% arm: 14.9%	
Mayzler et al (2005)	FiO ₂ 30% vs. FiO ₂ 80% (both w/N ₂ O)	19 per arm	Elective colorectal	30% arm: 17.6% 80% arm: 12.5%	Non- significant
Myles et al (2007)	FiO ₂ 30% + N ₂ O vs. FiO ₂ 80% + nitrogen	977 in arm 1; 1015 in arm 2	Elective or emergent noncardiothoracic resection	30% arm: 10.0% 80% arm: 7.7%	Differing comparators (N ₂ O vs. N)

*Variable SSI definitions

Grief R et al NEJM 2000;342:161+ Pryor KO et al JAMA 2004;291:79+ Belda FJ et al JAMA 2005;294:2035+ Mayzler O et al Minerva Anestesiol 2005;71:21+ Myles PS et al Anesthesiology 2007;107:221+

Overall RR High FiO2 = 0.74 (95% Cl 0.6-0.92)

Qadan M et al Arch Surg 2009;144:359+

Figure 2. Effect of perioperative supplemental oxygen therapy on surgical site infection risk reduction. Risk ratios (RRs) with 95% confidence intervals (CIs) are shown for individual, combined, and sensitivity analysis (SA) values. 1 indicates Mayzler et al¹⁰ (RR, 0.667; 95% CI, 0.125-3.550; P=.64); 2, Pryor et al¹¹ (2.222; 1.078-4.580; P=.03); 3, Belda et al¹² (0.607; 0.375-0.983; P=.04); 4, Greif et al¹³ (0.464; 0.246-0.875; P=.02); 5, Myles et al¹⁴ (0.740; 0.559-0.979; P=.04); overall (0.742; 0.599-0.919; P=.006; $I^2=65.584$); SA1, noncolorectal studies excluded (0.556; 0.383-0.808; P=.002; $I^2=0.000$); SA2, nitrous oxide studies excluded (0.551; 0.375-0.808; P=.002; $I^2=0.000$); SA3, the study by Pryor et al excluded (0.667; 0.533-0.835; P=.000; $I^2=0.000$); and SA4, the largest study excluded (0.744; 0.534-1.037; P=.08; $I^2=74.186$). Squares represent individual randomized controlled trials; lines attached to squares, individual 95% confidence intervals; diamonds, the combined effect of several (or all) meta-analyses.

Effect of High Perioperative Oxygen Fraction on Surgical Site Infection and Pulmonary **Complications After Abdominal Surgery** The PROXI Randomized Clinical Trial

- Acute or elective laparotomy
- Standard antibiotic prophylaxis; No colonic abx

MEDICAL CENTER

Meyhoff CS et al JAMA 2009;302:1543+

Results

- Higher oxygen FiO₂ <u>not</u> associated with increase in pulmonary complications but no impact on SSI.
- Normothermia not maintained; less fluid volumes \rightarrow local vasoconstriction and less O_2 delivery?

	35%	80%
SSI	141/701(20.1%)	131/685 (19.1%)
Atelectasis	7.1%	7.9%

The Scoop on O₂ and SSI

- Benefits:
 - It's cheap
 - It's easy
 - It worked in several RCTs
- Risks:
 - ? ↑ atelectasis
 - Pulmonary toxicity?
 - Not seen in RCT
 - Associated with increased risk in RCT

• Questions:

- Variable SSI ascertainment
- Use in colorectal pts?
- Manner of delivery important?
 - Nasal cannula vs. mask

Maintaining Sterile Technique: Glove Perforations

- Prospective observational cohort study
- 4,147 consecutive surgical procedures
- Outcome = SSI
- Glove perforation assessed intraop
- Higher likelihood of SSI in procedures in which gloves were perforated (OR = 2.0)
- Risk of perforation 1 operative time
 - Significant increase after 2 hrs
- Double gloving/routine replacement?

Figure 2. Rate of surgical site infections (SSIs) in 4147 surgical procedures by use of surgical antimicrobial prophylaxis and maintenance of intraoperative asepsis.

Causes of SSI: Impaired Providers?

Sherertz RJ et al Infect Control Hosp Epidemiol 2009;30:1120+

VANDERBILT VUNIVERSITY MEDICAL CENTER

Surgical Site Infections in Colon Surgery

The Patient, the Procedure, the Hospital, and the Surgeon

Martin Hübner, MD; Michele Diana, MD; Giorgio Zanetti, MD, MSc; Marie-Christine Eisenring, RN; Nicolas Demartines, MD; Nicolas Troillet, MD, MSc

Figure 1. Surgeons' individual adjusted odds ratios (AORs) for surgical site infection (SSI) after colon surgery, adjusted for patients' sex and age, American Society of Anesthesiologists score, interventions' class of contamination and duration (>3 hours), emergency, laparoscopic approach, and properly timed antibiotic prophylaxis (<1 hour before the incision). Error bars indicate 95% confidence interval VANDERBILT VINCERSITY

Hübner M et al Arch Surg 2011;146:1240+

MEDICAL CENTER

Ambulatory Surgical Centers: Surgical Infections = More Than SSI

- ASC in MD, NC, OK (n=68)
- 67.6% had at least 1 lapse in infection control practices

Infection Control Lapses Identified	No./Total No. (%)
Hand Hygiene/Use of PPE	12/62 (19.4%)
Injection Safety/Medication Handling	19/67 (28.4%)
Single Dose Meds Used >1 Pt	18/64 (28.1%)
Equipment Reprocessing	19/67 (28.4%)
Environmental cleaning	12/64 (18.8%)
Handling of Blood Glucose Monitoring Equipment	12/54 (46.3%)

VANDERBILT WUNIVERSITY MEDICAL CENTER

Impact of intraoperative behavior on surgical site infections

Guido Beldi, M.D.^{a,*}, Sonja Bisch-Knaden, Ph.D.^a, Vanessa Banz, M.D.^a, Kathrin Mühlemann, M.D., Ph.D.^b, Daniel Candinas, M.D.^a

MEDICAL CENTER

Figure 1 Distribution of lapses in discipline in the study population.

The Challenge

- Create a culture where speaking up is the norm
- Encourage vigilance for all members of the team
- Move from "Show me why I should do it" to "Show me why you should not"
- Standardize practices

The Challenge

 Don't forget the basic practices & don't assume everyone knows them

- Make the training stick
- Provide granular, timely data (SWAT teams)

Public Reporting of SSI Rates

- Risk adjustment limited
- Restance with application of SSI definitions
- Tied to payments
 - SSI added to Centers for Medicaid and Medicare Services payment system
 - Colon surgery
 - Abd hysterectomy

MEDICAL CENTER

New Challenges for SSI Care

- Changes in surgical arena
 - Move to outpatient/office venues
- New surgical techniques
 - Minimally-invasive procedures
- Optimizing surveillance
- Mandatory reporting of SSIs
- CA-MRSA and Abx prophylaxis

